Representation Theory of Finite Semigroups, Semigroup Radicals and Formal Language Theory
نویسندگان
چکیده
In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an arbitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semigroups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and Černý’s conjecture for an important class of automata.
منابع مشابه
Groups and semigroups: connections and contrasts
Group theory and semigroup theory have developed in somewhat different directions in the past several decades. While Cayley’s theorem enables us to view groups as groups of permutations of some set, the analogous result in semigroup theory represents semigroups as semigroups of functions from a set to itself. Of course both group theory and semigroup theory have developed significantly beyond t...
متن کاملMöbius functions and semigroup representation theory
This paper explores several applications of Möbius functions to the representation theory of finite semigroups. We extend Solomon’s approach to the semigroup algebra of a finite semilattice via Möbius functions to arbitrary finite inverse semigroups. This allows us to explicitly calculate the orthogonal central idempotents decomposing an inverse semigroup algebra into a direct product of matrix...
متن کاملMöbius Functions and Semigroup Representation Theory Ii: Character Formulas and Multiplicities
We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota’s theory of Möbius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete descr...
متن کاملClassification of Monogenic Ternary Semigroups
The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...
متن کامل